The Structures of α-Naphthylphenylmethylsilanes, Optically Active Silicon Compounds, and Their Absolute Configurations[†]

ΒΥ Υ.ΟΚΑΥΑ

IBM Watson Research Center, Yorktown Heights, New York, U.S.A.

and T. Ashida

Institute of Protein Research, Osaka University, Osaka, Japan

(Received 26 May 1965)

Optically active α -naphthylphenylmethylsilane, α -C₁₀H₇. C₆H₅. CH₃. Si*H and its fluoroderivative, α -C₁₀H₇. C₆H₅. CH₃. Si*F, crystallize in the orthorhombic system with space group P2₁₂₁₂₁; the cell dimensions are: a=8.72, b=19.89, c=7.88 Å for the H compound and a=8.77, b=19.89, c=8.10 Å for the F compound. Three-dimensional integrated intensity data for these crystals were collected on a computer-controlled diffractometer operated by an IBM 1620 machine under a stored data collection program. In order to determine the absolute configuration, Cu K α radiation was used for the dextrorotatory F compound; the data for the H compound were obtained with Mo K α radiation.

The effect of overcrowding around the central asymmetric Si atom is clearly demonstrated in buckling of the α -naphthyl group; the Si – C (of α -naphthyl) bond then bends out of the naphthyl plane by about 0.2 Å. Other features of the conformation of the molecules are also discussed.

The absolute configuration of the F compound was determined by refining the structure in the two possible enantiomorphs; the configuration refining to the lower residuals (by 12%) agrees with that assigned by a chemical method.

Introduction

 α -Naphthylphenylmethylsilane, α -C₁₀H₇C₆H₅CH₃SiH, and its fluoro and chloro derivatives (hereafter called α -SiH, SiF and SiCl, respectively) are the first optically active silicon compounds with asymmetric silicon atoms synthesized and resolved. The crystal structures of these compounds were studied in order to correlate and confirm results of various chemical studies on their configurations, steric interactions between the substituents and their absolute configurations. The present paper deals with the detailed crystal structures of α -SiH and SiF; unfortunately, no work was done on the chloro compound, which is less stable in the air.

The present study is a complete rework of the previous results (Ashida, Pepinsky & Okaya, 1963). The analysis is based on complete three-dimensional intensity data collected by using CCXD, a computer-con-

† This work was supported in part by AFCRL 19(628)-2469.

PHENYL GROUP

Fig. 1. α -SiX, molecular configuration and numbering of atoms. The absolute configuration of this conformation corresponds to (+)- α -SiH, (+)- α -SiF and (-)- α -SiCl.

A C 20 – 1

trolled diffractometer (Cole, Okaya & Chambers, 1963), and the refinement was carried out with the use of anisotropic temperature factors; the contribution of hydrogen atoms is also included in the computation. The chemical formula of α -SiF and the numbering of the atoms which will be used in this article are shown in Fig. 1.

An interesting case of isomorphism was found among the crystals of the molecules of the same hand and their mixed crystals (Sommer, Frye, Musolf, Parker, Rodewald, Michael, Okaya & Pepinsky, 1961); the isomorphism was used in confirming the configurations determined by various chemical as well as physico-chemical methods (see, *e.g.* a review article by Sommer, 1962).

These silanes are overcrowded molecules because of the existence of large groups around the central silicon atoms. It is interesting to study the effect of such overcrowding on the conformation; especially, the effect of the hydrogen atom on $C(\alpha, 9)$, to be called an *epi*hydrogen to the Si atom, on the planarity of the α -naphthyl group.

Experimental

A single crystal of $(+)-\alpha$ -SiF was ground into a sphere and mounted on a General Electric Goniostat which is a part of CCXD, a computer-controlled diffractometer operated by an IBM 1620 machine under a stored data-taking program (Okaya, 1964). Cu Kα radiation was used to utilize the imaginary part of Si in establishing the absolute configuration of the molecule. The three-dimensional data for $\sin \theta < 0.94$ were recorded by the diffractometer. Only one octant of the Ewald sphere was recorded; however, as discussed later it was sufficient in determining the absolute configuration. For each reflection, the settings for the ω and χ axes were optimized by scanning around the calculated values; the integrated intensity was then recorded by the $(\theta - 2\theta)$ step scan method. The computer program chooses the step scan range in such a way that the counts at the starting and the end of the scan represent the background count at the 2θ value of the reflection. In the course of the ω scanning, the maximum and minimum counts of a reflection were recorded, and if the difference between these two counts was less than the statistical fluctuation the reflection was treated as a non-observed one. The three-dimensional data for $(-)-\alpha$ -SiH were also collected in the same manner; the radiation used for this crystal was Mo $K\alpha$. The integrated intensity of a reflection was calculated from the data on count, time, and the attenuator factor for each step; this calculation is performed as a time-shared problem on the IBM 1620 computer (Okaya, 1964). The integrated intensity data thus obtained were corrected for the Lorentzpolarization factors; correction for the absorption effect was made for the data on the fluoro compound $(\mu r = 1.2)$. The cell dimensions were measured on the diffractometer and used as input data for the intensity

collection program; they are shown in Table 1.* For each crystal, about 80% of the reflections measured on the diffractometer (~1400) were observed.

Table 1. Cell constants of α -SiX determined on the diffractometer

	Space grou	p <i>P</i> 2 ₁ 2 ₁ 2 ₁	
	а	Ь	C
H F	8·72 ₇ Å 8·77 ₄	19·89 ₆ Å 19·89 ₀	7·88₄ Å 8·105

The refinements of the structures were carried out with a block-diagonal least-squares program on an IBM 7094 computer (Okaya, 1963). The approximate parameters given in the previous report were used as the starting values for the refinements; the previous isotropic temperature factors were transformed into anisotropic temperature factors. For each crystal, after several refinement cycles without hydrogen atoms, their positions were studied by the usual $F_o - F_c$ synthesis method. The atomic coordinates thus obtained for hydrogen atoms with isotropic thermal parameters (5.0 Å^2) were then included in the refinement cycles. After a reasonable number of iterations, when changes in the residual became negligible, the refinement was halted and the parameters at that stage were used for the subsequent discussion. The final error indices, $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, were about 0.07 for the two crystals, excluding the non-observed reflections. The parameters are listed in Tables 2 and 3; comparison between the observed and calculated structure factors is shown in Table 4. The atomic scattering factors used in the computation were obtained from the tables in International Tables for X-ray Crystallography. The weighting schemes used for the two crystals are: $\omega =$ 1.0 for $|F_{obs}| \le 20$, $20/|F_{obs}|$ for larger structure factors and weights of zero for non-observed reflections. The crystals are molecular and no force other than van der Waals force exists in the crystals. The atoms undergo rather strong thermal vibration at room temperature, and unfortunately the standard deviations of atomic coordinates are relatively high. For each crystal, in the course of intensity measurements which took about three weeks, approximately 20% of the original volume was lost by decomposition and/or evaporation. The correction for this decay was made by setting dayto-day decay factors obtained by measuring a standard set of reflections. Nonetheless, these effects contribute to error in the intensity measurement and eventually to an increase in standard deviations.

^{*} There is a disparity between the cell constants quoted in the earlier work and the values in Table 1. The latter dimensions were used in the data collection on the diffractometer and their errors are estimated to be less than 0.5%. Since the data used to derive the earlier values are not accessible to the authors, they are unable to discuss the rather large discrepancies.

Table 2

(a) SiF. Atomic coordinates in fractions of cell edges and their standard deviations in 10⁻⁴ Å. These atomic coordinates when used in the left-hand coordinate system correspond to the absolute configuration of (+)-α-SiF.

	x	$\sigma(x)$	у	$\sigma(y)$	Z	$\sigma(z)$
Si	0.7749	20	0.1707	19	0.7112	18
F	0.8649	38	0.1282	40	0.8501	39
$C(\alpha, 1) C(\alpha, 2) C(\alpha, 3) C(\alpha, 4) C(\alpha, 5) C(\alpha, 6) C(\alpha, 7) C(\alpha, 8) C(\alpha, 9) C(\alpha,$	0.7766 0.6410 0.6340 0.7637 0.9072 1.0462 1.1800 1.1860	59 57 68 74 65 76 77 67	0.1192 0.1115 0.0784 0.0564 0.0647 0.0422 0.0484 0.0767	56 55 70 62 54 67 69 69	0.5156 0.4361 0.2762 0.2034 0.2832 0.2044 0.2793 0.4453	56 57 78 73 71 79 73 78
$C(\alpha, 9)$ $C(\alpha, 10)$	0.9115	63 54	0.0989 0.0944	52	0·5209 0·4407	59
$C(\varphi, 1) C(\varphi, 2) C(\varphi, 3) C(\varphi, 4) C(\varphi, 5) C(\varphi, 6)$	0.5770 0.4938 0.3419 0.2726 0.3506 0.5029	52 70 79 72 82 71	0·1818 0·1271 0·1337 0·1935 0·2486 0·2437	58 68 80 82 78 64	0·7836 0·8400 0·8887 0·8810 0·8272 0·7761	59 71 76 68 79 77
CH ₃	0.8770	70	0.2499	64	0.6823	75
H(α , 2) H(α , 3) H(α , 4) H(α , 6) H(α , 7) H(α , 8) H(α , 9)	0·520 0·550 0·774 1·006 1·286 1·285 1·064		0.135 0.067 0.029 0.029 0.035 0.090 0.126		0·481 0·242 0·102 0·070 0·241 0·526 0·634	
$H(\varphi, 2)$ $H(\varphi, 3)$ $H(\varphi, 4)$ $H(\varphi, 5)$ $H(\varphi, 6)$	0·523 0·322 0·167 0·335 0·572		0·082 0·095 0·200 0·287 0·288		0.853 0.908 0.925 0.823 0.744	

(b) Thermal parameters. The β 's are used in the expression: exp $\{-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+hk\beta_{12}+hl\beta_{13}+kl\beta_{23})\}$.

	β_{11}	β ₂₂	β_{33}	β_{12}	β_{13}	β_{23}
Si	0.019913	0.004094	0.020395	-0.000647	-0.000175	0.000032
F	0.025115	0.005969	0.022151	0.002524	-0.004779	0.000704
$C(\alpha, 1) C(\alpha, 2) C(\alpha, 3) C(\alpha, 4) C(\alpha, 5) C(\alpha, 6) C(\alpha, 7) C(\alpha, 8) C(\alpha, 9)$	0.019249 0.016066 0.017064 0.024799 0.021239 0.023329 0.020839 0.020839 0.018025 0.019813	0.003706 0.004326 0.005894 0.004131 0.003246 0.004581 0.005292 0.005003 0.004284	0.019422 0.021316 0.030966 0.023185 0.022780 0.030835 0.032394 0.032425 0.023527	$\begin{array}{c} - 0.000455\\ 0.000783\\ - 0.000989\\ - 0.004022\\ - 0.001193\\ - 0.000183\\ 0.003797\\ 0.001256\\ 0.002197\end{array}$	$\begin{array}{c} 0.001772\\ 0.001941\\ -\ 0.003797\\ 0.001879\\ 0.000899\\ 0.009702\\ 0.006533\\ -\ 0.002852\\ 0.002810\end{array}$	$\begin{array}{c} 0.001026\\ 0.000671\\ -0.002246\\ -0.001098\\ 0.000013\\ -0.001434\\ 0.000326\\ 0.001485\\ 0.001485\\ 0.001752\end{array}$
$C(\alpha, 10)$	0.018994	0.003235	0.022206	0.001769	0.002909	0.001215
$C(\varphi, 1) C(\varphi, 2) C(\varphi, 3) C(\varphi, 4) C(\varphi, 5) C(\varphi, 6)$	0.022381 0.022893 0.025265 0.021259 0.028342 0.022710	0·003776 0·004128 0·005410 0·006631 0·005254 0·004457	0·017410 0·030759 0·027502 0·022123 0·030633 0·024805	$\begin{array}{c} 0.000595\\ 0.001337\\ -0.001141\\ 0.001735\\ 0.005514\\ 0.002389\end{array}$	$\begin{array}{c} - 0.006686\\ 0.009174\\ 0.005065\\ 0.000450\\ - 0.00097\\ 0.000473\end{array}$	$\begin{array}{c} - 0.002023\\ 0.001318\\ 0.000705\\ - 0.003648\\ - 0.001106\\ - 0.000517\end{array}$
CH3	0.024762	0.004373	0.032713	-0.002705	0.007439	-0.001498

Table 3

(a) Atomic coordinates of SiH. For explanation of the coordinate system, see the legend of Table 2.

	x	$\sigma(x)$	у	$\sigma(y)$	Z	$\sigma(z)$
Si	0.7685	17	0.1714	18	0.7207	16
C(α, 1)	0.7674	50	0.1199	45	0.5232	48
$C(\alpha, 2)$	0.6329	50	0.1100	55	0.4372	48
$C(\alpha, 3)$	0.6305	58	0.0761	62	0.2779	55
$C(\alpha, 4)$	0.0011	62 52	0.0630	33	0.2082	20 /0
$C(\alpha, 5)$	1.0388	55	0.0397	58	0.2168	56
$C(\alpha, 0)$	1.1717	54	0.0472	60	0.2951	62
$C(\alpha, 8)$	1.1799	53	0.0768	59	0.4542	59
$C(\alpha, 9)$	1.0495	59	0.1003	54	0.5292	49
$C(\alpha, 10)$	0.9063	49	0.0948	43	0.4498	50
$C(\varphi, 1)$	0.5662	48	0.1833	42	0.7899	52
$C(\varphi, 2)$	0.4858	43	0.1296	48	0.8537	50
$C(\varphi, 3)$	0.3339	44	0.1356	59	0.8975	46
$C(\varphi, 4)$	0.2630	59	0.1965	59	0.8809	52
$C(\varphi, 5)$	0.3408	57	0.2208	51	0.8230	49
$C(\varphi, 6)$	0.4924	62	0.2448	51	0.7770	51
CH ₃	0.8685	62	0.2517	59	0.6802	61
$H(\alpha, 2)$	0.527		0.129		0.480	
$H(\alpha, 3)$	0.536		0.077		0.231	
$H(\alpha, 4)$	0.769		0.029		0.096	
$H(\alpha, 6)$	1.028		0.020		0.087	
$H(\alpha, 7)$	1.262		0.029		0.244	
$H(\alpha, 8)$	1.275		0.086		0.502	
$H(\alpha, 9)$	1.020		0.119		0.032	
$H(\varphi, 2)$	0.542		0.079		0.871	
$H(\varphi, 3)$	0.259		0.096		0.952	
$H(\varphi, 4)$	0.163		0.199		0.909	
$H(\varphi, 5)$	0.292		0.290		0.751	
$H(\varphi, 0)$	0.203		0.280		0.121	

(b) Thermal parameters

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Si	0.013256	0.003142	0.015323	-0.000535	-0.000253	-0.000304
C(α, 1)	0.010306	0.002369	0.016670	-0.000374	0.003274	0.000686
$C(\alpha, 2)$	0.010951	0.003343	0.017988	-0.001269	0.000861	0.001154
$C(\alpha, 3)$	0.014144	0.004872	0.020297	-0.002472	-0.006327	-0.001358
C(a, 4)	0.017265	0.003043	0.020966	-0.002627	-0.000421	-0.003189
$C(\alpha, 5)$	0.013254	0.002299	0.019193	-0.001738	0.002073	-0.001087
C(a, 6)	0.014266	0.003075	0.028229	0.000675	0.008664	-0.002052
$C(\alpha, 7)$	0.011990	0.003953	0.033266	0.001255	0.015123	0.001266
$C(\alpha, 8)$	0.012590	0.003826	0.029296	0.000992	-0.000937	0.002325
$C(\alpha, 9)$	0.013951	0.003367	0.018209	-0.000655	-0.000858	0.003144
$C(\alpha, 10)$	0.012639	0.002182	0.019104	-0.000827	0.001276	0.001415
C(ø. 1)	0.016172	0.003243	0.012723	0.000446	-0.002290	-0.001325
$C(\varphi, 2)$	0.016609	0.003244	0.021373	0.000691	0.003543	0.001112
$C(\varphi, 3)$	0.014934	0.004257	0.019599	-0.001735	0.004727	-0.001804
$C(\varphi, 4)$	0.013190	0.006285	0.015049	0.000220	0.003290	-0.004811
$C(\varphi, 5)$	0.018778	0.004008	0.021427	0.001989	-0.000681	-0.000230
$C(\varphi, 6)$	0.017151	0.003364	0.018104	0.000740	-0.000718	-0.000418
CH3	0.026755	0.003588	0.020712	-0.005855	0.006592	-0.001356

Discussion

Bond distances, bond angles and other important intra and inter-molecular approaches have been calculated from the atomic coordinates in Tables 2 and 3; they are shown in Figs.2, 3 and 4. Fig.2 shows the general molecular conformation with some important interatomic distances between the substituent groups. It is apparent from these figures that $C(\alpha, 9)$ and especially its *epi*-hydrogen try to turn away from the α -naphthyl or methyl groups and come close to the hydrogen (or fluorine) atom which is the smallest of the four substituents. However, this conformation does not yet solve the problem of overcrowding, the effect

Table 4.	Comparison	between	the	observed	and	calculated	structure	factors
			(a) α–SiH				

FCAL 223 163 91 107 455 88 115 121 55 61 41 55 88 28 28	538 28 7 163 7 186 152 4 29 6 5 4 76 5 1 15 1 1 2 2 5 5 5 5 5 7 7 2 9 4 2 9 6 5 4 76 5 1 15 2 4 2 5 5 5 5 6 5 4 76 5 1 15 8 71 9 6 6 7 3 7 1 2 5 1 7 7 7 7 7 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7	89 20 54 15 42 41
FDB5 224 163 86 116 46 71 86 123 125 59 0 0 0 0 32 8	0 22 8 2 161 1 976 3 1 161 1 176 3 1 160 0 1 11 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 2 1 1 1 6 3 1 2 0 7 1 1 8 6 8 5 1 2 0 7 1 7 6 7	84 22 69 0 46 46
	NER COMPARENCESSANDER CONSTRAINT CONSTRAINT CONSTRAINT CONSTRAINT CONSTRAINT CONSTRAINT	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
к 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22	1222 01234567890123456789012345678901234567890123456789012345678901234567 0123456789012234567890123	10 0 1 4 5 6
н	5 7 8	10
FC AL 2 960 477 347 377 794 247 119 525 146 573 146 573 192 51	5734 10251 11152734 2433 713757 1253 11152734 20777 202443 713757 202443 713757 20274 20777 2024333 1056777 2024333 105777 202433 105777 20243 20777 20224 20777 20243 20777 2024 20777 2024 20777 2024 20777 2024 20777 2024 2077 2024 2077 2024 2077 2024 2077 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2095 2024 2010 2095 2024 2010 2095 2024 2010 2095 2024 2010 2095 2024 2010 2095 2024 2010 2095 2025 2010 2	177 287 170 102 211 127
FOBS 0 1006 543 405 420 230 214 114 491 114 491 114 620 219 191	6200 1913 1408 340 340 310 764 443 1862 2132 212 21	201 310 176 106 219 124
L1 222222222222222222222222222222222222		222222
H K 6 0 0 1 2 3 4 5 5 6 7 8 7 10 10 11 12 13	10111334556789001112345567890011123455678900111234556789001112345567890011123455678900111234556789001112345567890011123455678900111234556789001112345567890011123455678900111234556789001112345567890011123455678900111234556789000000000000000000000000000000000000	4 0 1 2 3 4 5
FCAL 129 45 1.0 86 6 34 86 24 33 93 226 27 107 120	226710033244983372078348473784427378437844737844737844747378447474747474	21 36 28 79 36 38
FIBS 115 39 0 85 0 69 63 91 38 0 91 38 0 9207 99 99 131	$ \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{$	11 5 45 77 31
H K L 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 22 1 5 C 1 1 1 2 1 3 1 4 1 5 C 1 4 1 5 C 1 6 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1	123456789011231456769: 012345678910112111111111111111111111111111111111	·) (1 1 1 2 1 3 1 4 1 5 1
FCAL 108 607 485 164 251 119 34 242 177 115 86 118 36 17	86886772444 1336772444 8422443834465772413124673332662353 1297113461651518162571335518165736531816518180539627624688953629522 102342 102342	200 155 79 23 103 170 194
FOBS 131 600 483 157 252 107 255 166 106 106 0 58 89 121 0 13	81213131671 1213131671 4 273144374399 2756877929567 32867 229776877929567 32867 3287712121 3287712121 328711212171522374 328711212171522374 32871212153480 2177522374 55142253480 2177522374 55142253480 2177522374 55142253480 2177522374 55142253480 2177522374 55142255 514225 514225 514225 514225 514225 514225 514225 514225 514255 514225 514255 514555 514555 514555 514555 5145555 5145555 5145555 51455555 51455555 51455555555	182 159 79 35 105 167 179
K L 5 1 6 1 7 1 8 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 17 1 18 1 20 1	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 5 1 6 1 7 1 8 1 9 1 10 1
FCAL 63 63 23 20 116 84 192 32 143 92 79 124 253 114 26	1253142616526017228 1019251203943629207571457 2554384477883502771826549514017131110281719844 3539222578 667810	31 37 257 161 827 1606
FOBS 77 75 0 98 98 96 48 152 93 75 120 268 106 0 24	12883052415270010090700100920910100573355 3622800770098300000114928850101890000000000000000000000000000000	3 2 154 768 1818
10000 000000000000		с с 1 1 1
H K 19 20 22 5 1 22 3 4 5 6 7 9 9 10 11 11	лананананананананананананананананананан	5 0 1 2 3 4
FCAL 171 525 135 254 138 177 36 45 393 17 364	$\begin{array}{c} 393\\ 31064\\ 600\\ 243\\ 31064\\ 243\\ 325\\ 601\\ 201\\ 325\\ 100\\ 201\\ 153\\ 325\\ 100\\ 201\\ 153\\ 325\\ 100\\ 201\\ 153\\ 335\\ 100\\ 100\\ 327\\ 305\\ 100\\ 201\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$	57 28 113 112 84 20 20
FCBS 171 532 761 115 248 155 340 192 35 14 5 63 400 0 394 63		64 27 122 117 85 0
H 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1		

Table 4 (cont.)

32 45 60 28 37 42 60 11

36 26 29 23

1234567900

0 7

32 17 6 2 H 3 B

5

00000000000

41 32

47 53

4 0125450784

30 54

1 C 2 3 4 5 7 8 ~~~~~~~ . 159 58 128 182 119 68 168 95 1+-146 47 112 178 112 51 170 94

8 8 8 37 27 19 52

н с

K1234567891123456789c2

123456789、1123456789 1123456789、1123456789 221

1234567

3

123456787

3

1 3 3

of which can be seen in deviations from the planarity of the α -naphthyl group. The deviations of atoms from the α -naphthyl group are shown in Fig.5. Here in evaluating the equations of the α -naphthyl planes, the atoms placed in dotted regions were not included in calculations. As shown in the figure, the $C(\alpha, 8)$ - $C(\alpha, 9)$ and $C(\alpha, 1)-C(\alpha, 2)$ edges buckle from the

н с

 α -naphthyl plane in opposite directions. The Si-C(α , 1) bond then bends out of the plane in the direction of the buckling of the $C(\alpha, 1)-C(\alpha, 2)$ bond. The bending of the Si-C(α , 1) bond is about 7° and represents a relatively large shift of the Si atom from the plane. The angles around $C(\alpha, 1)$ and $C(\alpha, 10)$ also contribute in increasing the separation between Si and the $C(\alpha, 8)$ -

Table 4 (cont.) $(b)\alpha$ -SiF

AL33843131464424384607 5421463450912295091219451179912517981280774 223229999977862999900081 2229597133575320 67742145455558662418877981280774 22322977133575320 677424263455586624120 1111111111111111111111111111111111
F0156256338166210305565533816621035562553381662103556255338166210355625533816621035562553381662103556255338166210355565533816621035556553173103308755064555383816621819272066000726228129810827206655303075880512171100776440663900008440000000000000000000000000000000
LUNNINNNNNNNN ANNNNNNNNNNNNNNNNNNNNNNNNNN
H K 77 8890 101 112 13313 156677899 101 112 13455677899 101 112 133455677899 101 112 133455677899 101 112 133455677899 101 112 133455677899 101 112 133455677899 101 112 133455677899 101 112 133455677899 101 112 133455677899 101 112 112 113 113 115 115 117 117 117 117 117 117 117 117
$ \begin{array}{c} FCAL \\ I 597 \\ J 273 \\ J 273 \\ J 270 \\ J$
F085 1136 136 136 136 136 136 136 13
$ \begin{array}{c} K & \texttt{C} & \texttt{I} & \texttt{I} \\ K & \texttt{C} & \texttt{I} & \texttt{I} \\ I & \texttt{I} \\ I & \texttt{I} \\ I & \texttt{I} \\ I \\ \mathsf$
F C L L L L L L L L L L L L L L L L L L
F0775000863775001158898800003470031 5177510008633765516459985164500 7052751100086437500011588988163:040028000 000000000000000000000000000000
LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
$ \begin{array}{c} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$ \begin{array}{c} r_{085} \\ r_{085} \\ r_{085} \\ r_{085} \\ r_{09} \\ r_{09} \\ r_{01} \\ $
H K I K I I I I I
FC56876635275251011111111111111111111111111111111
F 1985 58000 522527124116239450066722551867024559112228660631202455905257852001165100 6186977055186702450215 30995999216600
K181922122 1234567891211121545167189221 01234567891211213415167189201234567871211213455678712112134567891211121345678912111213456781212
FC 11956 20 8 2477 23 27 52256 139 33 14 46 5 2 13 4 4 5 2 7 375 5 14 7 12 5 8 7 3 2 5 8 2 14 7 1 7 2 14 7 1 1 2 5 8 7 1 2 5 8 3 1 4 5 5 7 3 7 5 5 3 4 4 5 5 7 3 7 4 3 4 1 1 2 5 8 7 3 7 1 1 5 5 8 4 5 7 3 7 5 5 3 4 5 5 7 3 7 4 3 4 1 1 2 5 8 7 3 7 1 1 5 5 7 6 2 1 4 7 1 7 1 5 7 7 3 7 1 1 3 5 7 5 4 4 5 5 7 3 7 1 3 1 1 7 7 4 3 4 1 1 2 5 8 7 3 7 1 1 5 7 5 6 1 2 1 4 7 1 7 1 5 5 7 7 3 7 1 1 3 5 7 5 3 4 7 7 4 3 4 1 1 2 5 8 7 3 7 7 5 5 1 4 7 7 4 3 4 1 1 2 5 8 7 3 7 7 5 5 1 4 7 7 4 3 4 1 1 2 5 8 7 3 7 7 5 5 1 4 7 7 4 3 4 1 1 2 5 8 7 3 7 7 5 5 1 4 7 7 4 3 4 1 1 2 5 8 7 3 7 7 5 5 1 4 7 7 4 3 4 1 1 1 8 7 5 6 7 7 3 7 1 1 3 5 7 5 4 7 7 4 3 4 1 1 1 8 4 5 6 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F 1659 8209 2214 4207 2214 4207 5322 2249 32244 4207 5322 2493 2244 4207 5322 2493 2244 4207 5322 2493 2244 4207 5322 2493 2244 4207 5322 2493 2244 4207 5322 2493 2244 4207 5322 2493 2244 4207 5322 2493 2244 1057 2212 440 5322 200 75 568 430 75 10 56 20 75 10 58 44 20 75 10 58 20 75 10 58 44 20 75 10 58 20 75 20 75 10 75 20 75 10 58 75 10 75 10 58 20 75 10 58 10 50 75 10 50 50 50 50 50 50 50 50 50 50 50 50 50
K2468122468224123456789001123141516778900000000000000000000000000000000000

Table 4 (cont.)

 $C(\alpha, 9)$ edge. A similar bending of a bond between Si and an aromatic carbon atom is found in the cyclic dimer of tetramethyl-*p*-silphenylenesiloxane (Smith, 1964). In this example, the Si atom comes out of the phenyl plane by about 0.22 Å. As is obvious from the general conformation of the molecules, the deviations of atoms from the α -naphthyl plane of α -SiF are larger than those of α -SiH. It is expected that α -SiCl might exhibit further deviations from the planarity of the naphthyl group, and the amount of such distortions may have some significance in relation to the stability of the compounds. For example, the stability of the molecules against the attack by water decreases from α -SiH to α -SiCl and the Br compound is too unstable to exist out of solution.

Aside from these anomalies in the planarity of the α -naphthyl rings, other features of the molecules are more or less normal. The bond distances and angles in the α -naphthyl group are quite similar to the corresponding values in free naphthalene (Cruickshank, 1957). For comparison, the bond distances in the latter molecule are listed here; they are: $C(\alpha, 2)-C(\alpha, 3)$,

1.421 Å; $C(\alpha, 3)-C(\alpha, 4)$, 1.361 Å; $C(\alpha, 4)-C(\alpha, 5)$, 1.425 Å and C(α , 5)–C(α , 10), 1.410 Å. The phenyl groups are slightly distorted hexagons: for α -SiF the two bonds around $C(\varphi, 4)$ are shorter than the normal aromatic C-C distance. It is apparent from the angles around $C(\varphi, 1)$ and $C(\varphi, 4)$ that these short bonds are not caused by an error in the $C(\varphi, 4)$ position, but by a decrease in the $C(\varphi, 2)-C(\varphi, 1)-C(\varphi, 6)$ angle from the ideal one of 120°. In contrast to the configuration in α -SiF, there is no such specific shortening of the bonds around $C(\varphi, 4)$ for α -SiH, although in the latter molecule all the C-C bond distances in the phenyl group are shorter than the usual aromatic bond distance. It might be conjectured that the difference in the polarizability of H and F creates some change in the contribution of the *d* level of the central Si atoms and eventually influences the electronic state of the phenyl groups causing such a difference in the shape of these molecules. The Si atom is also slightly off the plane of the phenyl group by about 0.08 Å.

The Si–F distance of 1.61 Å observed in α -SiF is quite normal as that of a compound with a silicon atom associated with one fluorine atom. Shortening of the Si–F distances according to the number of fluorine atoms

Fig.2. General conformation of the molecules. Some important intramolecular separations are shown. A shaded square represents the *epi*-hydrogen on $C(\alpha, 9)$.

Fig. 3. Bond distances. Standard deviations of these distances are about 0.01-2 Å for C-C, 0.01 Å for Si-C and less than 0.01 Å for Si-F. (a) α -SiH, (b) α -SiF.

attached to Si is well established (see Pauling, 1960). All the C-H distances in the aromatic systems are around the usual value of 1.0 Å; the methyl groups exhibit rotation or statistical distribution around the Si-C bonds as seen by difference syntheses, and their hydrogen atoms were not included in the lists.

The integrated intensity of $(+)-\alpha$ -SiF was collected by using Cu K α which gives $\Delta f'' \simeq 0.3$. The structure was refined by starting from the coordinates representing the molecules of one hand and also from those of the opposite hand. The difference in the two sets of coordinates is a change from the right-hand system to the left-hand system in the crystal structure. One of

Fig. 4. Bond angles. (a) α -SiH, (b) α -SiF.

Fig. 5. Deviations of atoms from the α -naphthyl group showing buckling of the plane. (a) α -SiH, (b) α -SiF.

the two refinements converged with a smaller residual than the other by about 12% (or 1.07 as the ratio in R's); the structure with the smaller residual was therefore chosen to represent the correct hand of the molecule, the absolute configuration.* The absolute configuration thus obtained agrees with that deduced chemically by using Cram's asymmetric induction method (Brook & Limburg, 1963) and also with our previous result (Ashida, Pepinsky & Okaya, 1963). The result is used in interpreting the atomic coordinates in Table 2 for α -SiF, and since it has been established by various methods that α -SiF and α -SiH of the same rotation direction have the same configuration (Sommer, 1962), the same interpretation can be applied to the atomic coordinates of α -SiH in Table 3. In contrast to our previous determination of the absolute configurations in which certain pairs of hkl and $h\bar{k}\bar{l}$ reflections were studied, the present study used only the reflections in one octant. This is an example of determination of absolute configuration without the need to collect extra reflections (Ibers & Hamilton, 1964). The absolute configuration of $(+)-\alpha$ -SiX is shown in Fig.6.

The crystal structures of these compounds are normal molecular ones; the molecules are packed in the structure by the usual van der Waals force and all intermolecular separations exhibit normal values; also normal is the mode of contact between aromatic rings. A perspective drawing of the structure of $(+)-\alpha$ -SiF is shown in Fig. 7.

The anisotropic thermal parameters listed in Tables 2 and 3 were decoded into the corresponding vibration

* There is hardly any need to consult the table of Hamilton (1965) in deciding the correctness of the deduction.

Fig. 6. Absolute configuration of $(+)-\alpha$ -SiX, where X=H and F.

Fig. 7. $(+)-\alpha$ -Naphthylphenylmethylfluorosilane: A view of the structure. Fluorine atoms are shown by double circles.

ellipsoids. Inspection of the result indicates that the carbon atoms which are not involved in the crowding around the central Si atom undergo stronger vibration; they are $C(\alpha, 3)$, $C(\alpha, 4)$, $C(\alpha, 6)$, $C(\alpha, 7)$ and the three outside carbon atoms in the phenyl ring. The directions of the maximum amplitudes are almost in the ring planes. The characteristics of the thermal motion in the two crystals are quite similar and the *F* compound has larger amplitude than the *H* compound; this is reasonable in view of the stability of these two compounds.

The authors wish to express their gratitude to Professor L. H. Sommer of the Department of Chemistry, University of California at Davis, for the samples of α -SiH and α -SiF used in this study and also for the illuminating discussions on the chemical aspect of the compounds. They are also grateful to N. R. Stemple for his help in collecting intensity data on CCXD.

References

- Ashida, T., PEPINSKY, R. & OKAYA, Y. (1963). Acta Cryst. 16, A48.
- BROOK, A. G. & LIMBURG, W. W. (1963). J. Amer. Chem. Soc. 85, 832.
- COLE, H., OKAYA, Y. & CHAMBERS, F. W. (1963). Rev. Sci. Instrum. 34, 872.
- CRUICKSHANK, D. W. J. (1957). Acta Cryst. 10, 504.
- HAMILTON, W. C. (1965). Acta Cryst. 19, 502.
- IBERS, J. A. & HAMILTON, W. C. (1964). Acta Cryst. 17, 781.
- OKAYA, Y. (1963). Abstract for the ACA Computing Conference, IBM Research Center, March.
- OKAYA, Y. (1964). Control Program for Computer-Controlled Diffractometers. IBM Internal Report.
- PAULING, L. (1960). The Nature of the Chemical Bond.
- SMITH, G. S. (1964). Paper J-9, ACA Meeting, Montana State College.
- SOMMER, L. H. (1962). Angew. Chem. Internat. Ed. 1, 143.
- SOMMER, L. H., FRYE, C. L., MUSOLF, M. C., PARKER, G. A., RODEWALD, P. G., MICHAEL, K. W., OKAYA, Y. & PE-PINSKY, R., (1961). J. Amer. Chem. Soc. 83, 2210.

Acta Cryst. (1966). 20, 471

The Crystal Structure of Tetraphenylarsonium 3-Fluoro-1,1,4,5,5-pentacyano-2-azapentadienide

BY GUS J. PALENIK

Chemistry Division, Research Department, U.S. Naval Ordnance Test Station, China Lake, California, U.S.A.

(Received 14 June 1965 and in revised form 23 August 1965)

One of the two carbanions produced by the reaction of sodium or potassium cyanide with 1,2-dichlorohexafluorocyclopentene has been identified by X-ray diffraction as 3-fluoro-1,1,4,5,5-pentacyano-2azapentadienide. The crystal structure analysis of the tetraphenylarsonium salt was completed without any chemical assumptions.

Tetraphenylarsonium 3-fluoro-1,1,4,5,5-pentacyano-2-azapentadienide forms deep red orthorhombic crystals with a=9.789, b=24.601, c=23.918 Å. The space group is *Pcab* with 8 molecules per unit cell. The structure was refined by least-squares methods and the final residual (*R*) was 5.7 % for the 2835 reflections included in the analysis.

In the cation the arsenic atom is bonded to four carbon atoms at the corners of a tetrahedron with an average As-C bond distance of 1.897 ± 0.009 Å. The cation's ideal 4 symmetry is destroyed by rotation of the four planar phenyl groups around the As-C bond. The average C-C bond distance in the four phenyl groups is 1.389 ± 0.012 Å.

The deep red carbanion is nonplanar, probably the result of internal steric effects. The average of the five $C \equiv N$ bonds is 1.146 ± 0.012 Å, in agreement with other reported cyano compounds.

Introduction

The reaction of sodium or potassium cyanide with an excess of 1,2-dichlorohexafluorocyclopentene produces deeply colored solutions. From this reaction mixture, Carpenter (1965) found that two strongly colored carbanions could be isolated as the tetraalkylammonium, -phosphonium or -arsonium salts. The microanalyses indicated that the red carbanion had an approximate

empirical formula of $C_{9-11}N_6OF$. The magenta carbanion was formulated as $C_{11}N_6F$. Since the chemical and physical properties did not suggest a structure, an X-ray crystal structure determination appeared essential. The tetraphenylarsonium salt of the red anion (henceforth TPAS⁺ RD⁻) was chosen for the X-ray investigation since it was the most unusual of the two carbanions. The presence of the tetraphenylarsonium cation suggested that the structure of the anion could